DELL 2018 - First International Workshop on Developmental Learning Workshop on DELL
Topics/Call fo Papers
A child learns to know the world by absorbing external knowledge and thoughts all through the stages of his development. Following a parallel path, there is a new learning paradigm in machine learning - developmental learning, which aims to upgrade the intelligence of machines in a developmental context.
The world is dynamic and evolving. Given the fast development of information technology, every moment witnesses the surge of data produced in almost every industry and sector. Classical data analysis methods, which work in a closed loop and are reluctant to interact with outside environments, thus miss the new data to enrich the system, deliver novel concepts, and bring in new interpretations. Rather remaining stagnant and uninspired, the machine should conform to the trend of the knowledge and keep up with the state of the art. The idea of sustainable development can be reflected in different scenarios, e.g. online learning [1], lifelong learning [2], and learning to learn [3]. Their results suggest that beyond training and testing models, it is more important and challenging to maintain the models in a developmental context.
Recently, several new methods have been proposed for learning: from past labels to new labels [4, 5], from past features to new features [6-8], from past tasks to new tasks [9, 11], and from easy examples to complex examples [12-16]. However, in many cases they seem to not have a deep understanding of the connections between their approaches and a possible common underlying philosophy of developmental learning. Moreover, in the presence of demand for development, the theories, algorithms, and prototypes of traditional stationary learning paradigm become no longer effective or efficient. The main purpose of this first "International Workshop on Developmental Learning" is to bring together scientists, researchers and practitioners from different disciplines (including computer science, psychology, and social science) to present recent advances in developmental learning, address fundamental challenges of development learning in data mining, identify prospective applications of developmental learning, and foster interactions between disciplines to promote the research on development learning.
The topics of interest include, but are not limited to:
Addressing similarities and differences between stationary and developmental learning.
Designing effective optimization techniques for the constantly emerging big data.
Re-visiting traditional stationary learning problems to confront the dynamic environment.
Identifying new problems and applications of developmental learning in the real world.
Providing in-depth analysis on the theoretical foundations of developmental learning.
Developing novel solutions to tackle challenges around developments.
The world is dynamic and evolving. Given the fast development of information technology, every moment witnesses the surge of data produced in almost every industry and sector. Classical data analysis methods, which work in a closed loop and are reluctant to interact with outside environments, thus miss the new data to enrich the system, deliver novel concepts, and bring in new interpretations. Rather remaining stagnant and uninspired, the machine should conform to the trend of the knowledge and keep up with the state of the art. The idea of sustainable development can be reflected in different scenarios, e.g. online learning [1], lifelong learning [2], and learning to learn [3]. Their results suggest that beyond training and testing models, it is more important and challenging to maintain the models in a developmental context.
Recently, several new methods have been proposed for learning: from past labels to new labels [4, 5], from past features to new features [6-8], from past tasks to new tasks [9, 11], and from easy examples to complex examples [12-16]. However, in many cases they seem to not have a deep understanding of the connections between their approaches and a possible common underlying philosophy of developmental learning. Moreover, in the presence of demand for development, the theories, algorithms, and prototypes of traditional stationary learning paradigm become no longer effective or efficient. The main purpose of this first "International Workshop on Developmental Learning" is to bring together scientists, researchers and practitioners from different disciplines (including computer science, psychology, and social science) to present recent advances in developmental learning, address fundamental challenges of development learning in data mining, identify prospective applications of developmental learning, and foster interactions between disciplines to promote the research on development learning.
The topics of interest include, but are not limited to:
Addressing similarities and differences between stationary and developmental learning.
Designing effective optimization techniques for the constantly emerging big data.
Re-visiting traditional stationary learning problems to confront the dynamic environment.
Identifying new problems and applications of developmental learning in the real world.
Providing in-depth analysis on the theoretical foundations of developmental learning.
Developing novel solutions to tackle challenges around developments.
Other CFPs
- 6th International Workshop on Data Science and Big Data Analytics
- Sentiment Elicitation from Natural Text for Information Retrieval and Extraction (SENTIRE)
- 1st Workshop on Data-driven Intelligent Transportation
- Workshop on Data Mining for eLearning Personalization (DEEP)
- 4th International Conference on Recent Trends in Computer Science and Electronics
Last modified: 2018-07-08 22:54:01