2016 - Webinar on Normality Tests and Normality Transformations
Date2016-06-23
Deadline2016-06-23
VenueMississauga, Canada
KeywordsNormality Tests; Normality Transformations; Process Capability Indices
Topics/Call fo Papers
This webinar explains what it means to be “normally distributed”, how to assess normality, how to test for normality, and how to transform non-normal data into normal data.
Normality Tests and normality transformations are a combination of graphical and numerical methods that have been in use for many decades. These methods are essential to apply whenever a statistical test or method is used whose fundamental assumption is that the inputted data is normally distributed.
Normality “testing” involves creating a “normal probability plot” and calculating simple statistics for comparison to critical values in published tables. A normality “transformation” involves making simple changes to each of the raw-data values, such that the resulting values are more normally distributed than the original raw data.
Evaluation of the results of “tests” and “transformations” involves some objective and some subjective decisions; this webinar provides guidance on both types of decision making.
Areas Covered in the Session :
Regulatory requirements
Binomial distribution
Historical origin of the Normal distribution
Normal distribution formula, histogram, and curve
Validity of Normality transformations
Necessity for transformation to Normality
How to use Normality transformations
Normal Probability Plot
How to evaluate Normality of raw data and transformed data
Significance tests for Normality
Evaluating the results of a Normality test
Recommendations for implementation
Recommended reference textbooks
Who Will Benefit:
QA/QC Departments
Process Engineering Departments
Manufacturing Engineering Departments
QC/QC Technicians
Manufacturing Technicians
Research & Development Engineers
Normality Tests and normality transformations are a combination of graphical and numerical methods that have been in use for many decades. These methods are essential to apply whenever a statistical test or method is used whose fundamental assumption is that the inputted data is normally distributed.
Normality “testing” involves creating a “normal probability plot” and calculating simple statistics for comparison to critical values in published tables. A normality “transformation” involves making simple changes to each of the raw-data values, such that the resulting values are more normally distributed than the original raw data.
Evaluation of the results of “tests” and “transformations” involves some objective and some subjective decisions; this webinar provides guidance on both types of decision making.
Areas Covered in the Session :
Regulatory requirements
Binomial distribution
Historical origin of the Normal distribution
Normal distribution formula, histogram, and curve
Validity of Normality transformations
Necessity for transformation to Normality
How to use Normality transformations
Normal Probability Plot
How to evaluate Normality of raw data and transformed data
Significance tests for Normality
Evaluating the results of a Normality test
Recommendations for implementation
Recommended reference textbooks
Who Will Benefit:
QA/QC Departments
Process Engineering Departments
Manufacturing Engineering Departments
QC/QC Technicians
Manufacturing Technicians
Research & Development Engineers
Other CFPs
Last modified: 2016-05-20 20:33:43