ResearchBib Share Your Research, Maximize Your Social Impacts
Sign for Notice Everyday Sign up >> Login

ICCDA 2021 - 5th International Conference on Compute and Data Analysis (ICCDA 2021)

Date2021-02-02 - 2021-02-04

Deadline2020-11-25

VenueSanya, China China

KeywordsCompute; Data Analysis

Websitehttp://iccda.org

Topics/Call fo Papers

Full name: The 5th International Conference on Compute and Data Analysis
Abbreviation: ICCDA 2021
Website: http://iccda.org/
Date: Feb. 2-4, 2021
Location: Sanya, China
The International Conference on Compute and Data Analysis (ICCDA), is an annual conference hold each year. It is an international forum for academia and industries to exchange visions and ideas in the state of the art and practice of compute and data analysis.
The previous editions of ICCDA were held in Florida Polytechnic University, Lakeland, Northern Illinois University (NIU) DeKalb, University of Hawaii Maui College, Kahului, Silicon Valley, USA. ICCDA 2021 conference will be located in Sanya, China during February 2-4, 2021.
*Proceedings
Accepted and presented papers will be published into the ACM Proceedings (ISBN: 978-1-4503-8911-2), indexed by Ei compendex, scopus, etc.
*Keynote Speakers
Lili Qiu, The University of Texas at Austin, USA (ACM Fellow, IEEE Fellow, and ACM Distinguished Scientist)
Hai Jin, Huazhong University of Science and Technology, China (IEEE Fellow, CCF Fellow)
Zhiguo Gong, The University of Macau
*Invited Speakers
Yucong Duan, Hainan University, China
Lei Li, Hefei University of Technology, China
*Previous ICCDA
Past ICCDA papers were all published in the prestigious ACM proceedings:
ICCDA 2020, ISBN: 978-1-4503-7644-0, EI, Scopus indexing
ICCDA 2019, ISBN: 978-1-4503-6634-2, EI, Scopus indexed
ICCDA 2018, ISBN: 978-1-4503-6359-4, EI, Scopus indexed
ICCDA 2017, ISBN: 978-1-4503-5241-3, EI, Scopus indexed
*Submission Link
http://www.easychair.org/conferences/?conf=iccda20...
*Topics
Mathematical, probabilistic and statistical models and theories
Machine learning theories, models and systems
Knowledge discovery theories, models and systems
Manifold and metric learning
Deep learning
Scalable analysis and learning
Non-iidness learning
Heterogeneous data/information integration
Data pre-processing, sampling and reduction
Dimensionality reduction
Feature selection, transformation and construction
Large scale optimization
High performance computing for data analytics
Architecture, management and process for data science
More topics: http://iccda.org/cfp.html
*Contact
Ms. Maggie Lau
iccda_infoat163.com
Wechat: iconf-cs

Last modified: 2020-10-12 12:08:04